| 
						 | 
						- import torch.nn as nn
 - import torchvision.transforms as transforms
 - import math
 - from .binarized_modules import  BinarizeLinear,BinarizeConv2d
 - 
 - __all__ = ['resnet_binary']
 - 
 - def Binaryconv3x3(in_planes, out_planes, stride=1):
 -     "3x3 convolution with padding"
 -     return BinarizeConv2d(in_planes, out_planes, kernel_size=3, stride=stride,
 -                      padding=1, bias=False)
 - 
 - def conv3x3(in_planes, out_planes, stride=1):
 -     "3x3 convolution with padding"
 -     return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
 -                      padding=1, bias=False)
 - 
 - def init_model(model):
 -     for m in model.modules():
 -         if isinstance(m, BinarizeConv2d):
 -             n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 -             m.weight.data.normal_(0, math.sqrt(2. / n))
 -         elif isinstance(m, nn.BatchNorm2d):
 -             m.weight.data.fill_(1)
 -             m.bias.data.zero_()
 - 
 - 
 - class BasicBlock(nn.Module):
 -     expansion = 1
 - 
 -     def __init__(self, inplanes, planes, stride=1, downsample=None,do_bntan=True):
 -         super(BasicBlock, self).__init__()
 - 
 -         self.conv1 = Binaryconv3x3(inplanes, planes, stride)
 -         self.bn1 = nn.BatchNorm2d(planes)
 -         self.tanh1 = nn.Hardtanh(inplace=True)
 -         self.conv2 = Binaryconv3x3(planes, planes)
 -         self.tanh2 = nn.Hardtanh(inplace=True)
 -         self.bn2 = nn.BatchNorm2d(planes)
 - 
 -         self.downsample = downsample
 -         self.do_bntan=do_bntan;
 -         self.stride = stride
 - 
 -     def forward(self, x):
 - 
 -         residual = x.clone()
 - 
 -         out = self.conv1(x)
 -         out = self.bn1(out)
 -         out = self.tanh1(out)
 - 
 -         out = self.conv2(out)
 - 
 - 
 -         if self.downsample is not None:
 -             if residual.data.max()>1:
 -                 import pdb; pdb.set_trace()
 -             residual = self.downsample(residual)
 - 
 -         out += residual
 -         if self.do_bntan:
 -             out = self.bn2(out)
 -             out = self.tanh2(out)
 - 
 -         return out
 - 
 - 
 - class Bottleneck(nn.Module):
 -     expansion = 4
 - 
 -     def __init__(self, inplanes, planes, stride=1, downsample=None):
 -         super(Bottleneck, self).__init__()
 -         self.conv1 = BinarizeConv2d(inplanes, planes, kernel_size=1, bias=False)
 -         self.bn1 = nn.BatchNorm2d(planes)
 -         self.conv2 = BinarizeConv2d(planes, planes, kernel_size=3, stride=stride,
 -                                padding=1, bias=False)
 -         self.bn2 = nn.BatchNorm2d(planes)
 -         self.conv3 = BinarizeConv2d(planes, planes * 4, kernel_size=1, bias=False)
 -         self.bn3 = nn.BatchNorm2d(planes * 4)
 -         self.tanh = nn.Hardtanh(inplace=True)
 -         self.downsample = downsample
 -         self.stride = stride
 - 
 -     def forward(self, x):
 -         residual = x
 -         import pdb; pdb.set_trace()
 -         out = self.conv1(x)
 -         out = self.bn1(out)
 -         out = self.tanh(out)
 - 
 -         out = self.conv2(out)
 -         out = self.bn2(out)
 -         out = self.tanh(out)
 - 
 -         out = self.conv3(out)
 -         out = self.bn3(out)
 - 
 -         if self.downsample is not None:
 -             residual = self.downsample(x)
 - 
 -         out += residual
 -         if self.do_bntan:
 -             out = self.bn2(out)
 -             out = self.tanh2(out)
 - 
 -         return out
 - 
 - 
 - class ResNet(nn.Module):
 - 
 -     def __init__(self):
 -         super(ResNet, self).__init__()
 - 
 -     def _make_layer(self, block, planes, blocks, stride=1,do_bntan=True):
 -         downsample = None
 -         if stride != 1 or self.inplanes != planes * block.expansion:
 -             downsample = nn.Sequential(
 -                 BinarizeConv2d(self.inplanes, planes * block.expansion,
 -                           kernel_size=1, stride=stride, bias=False),
 -                 nn.BatchNorm2d(planes * block.expansion),
 -             )
 - 
 -         layers = []
 -         layers.append(block(self.inplanes, planes, stride, downsample))
 -         self.inplanes = planes * block.expansion
 -         for i in range(1, blocks-1):
 -             layers.append(block(self.inplanes, planes))
 -         layers.append(block(self.inplanes, planes,do_bntan=do_bntan))
 -         return nn.Sequential(*layers)
 - 
 -     def forward(self, x):
 -         x = self.conv1(x)
 -         x = self.maxpool(x)
 -         x = self.bn1(x)
 -         x = self.tanh1(x)
 -         x = self.layer1(x)
 -         x = self.layer2(x)
 -         x = self.layer3(x)
 -         x = self.layer4(x)
 - 
 -         x = self.avgpool(x)
 -         x = x.view(x.size(0), -1)
 -         x = self.bn2(x)
 -         x = self.tanh2(x)
 -         x = self.fc(x)
 -         x = self.bn3(x)
 -         x = self.logsoftmax(x)
 - 
 -         return x
 - 
 - 
 - class ResNet_imagenet(ResNet):
 - 
 -     def __init__(self, num_classes=1000,
 -                  block=Bottleneck, layers=[3, 4, 23, 3]):
 -         super(ResNet_imagenet, self).__init__()
 -         self.inplanes = 64
 -         self.conv1 = BinarizeConv2d(3, 64, kernel_size=7, stride=2, padding=3,
 -                                bias=False)
 -         self.bn1 = nn.BatchNorm2d(64)
 -         self.tanh = nn.Hardtanh(inplace=True)
 -         self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 -         self.layer1 = self._make_layer(block, 64, layers[0])
 -         self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
 -         self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
 -         self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
 -         self.avgpool = nn.AvgPool2d(7)
 -         self.fc = BinarizeLinear(512 * block.expansion, num_classes)
 - 
 -         init_model(self)
 -         self.regime = {
 -             0: {'optimizer': 'SGD', 'lr': 1e-1,
 -                 'weight_decay': 1e-4, 'momentum': 0.9},
 -             30: {'lr': 1e-2},
 -             60: {'lr': 1e-3, 'weight_decay': 0},
 -             90: {'lr': 1e-4}
 -         }
 - 
 - 
 - class ResNet_cifar10(ResNet):
 - 
 -     def __init__(self, num_classes=10,
 -                  block=BasicBlock, depth=18):
 -         super(ResNet_cifar10, self).__init__()
 -         self.inflate = 5
 -         self.inplanes = 16*self.inflate
 -         n = int((depth - 2) / 6)
 -         self.conv1 = BinarizeConv2d(3, 16*self.inflate, kernel_size=3, stride=1, padding=1,
 -                                bias=False)
 -         self.maxpool = lambda x: x
 -         self.bn1 = nn.BatchNorm2d(16*self.inflate)
 -         self.tanh1 = nn.Hardtanh(inplace=True)
 -         self.tanh2 = nn.Hardtanh(inplace=True)
 -         self.layer1 = self._make_layer(block, 16*self.inflate, n)
 -         self.layer2 = self._make_layer(block, 32*self.inflate, n, stride=2)
 -         self.layer3 = self._make_layer(block, 64*self.inflate, n, stride=2,do_bntan=False)
 -         self.layer4 = lambda x: x
 -         self.avgpool = nn.AvgPool2d(8)
 -         self.bn2 = nn.BatchNorm1d(64*self.inflate)
 -         self.bn3 = nn.BatchNorm1d(10)
 -         self.logsoftmax = nn.LogSoftmax()
 -         self.fc = BinarizeLinear(64*self.inflate, num_classes)
 - 
 -         init_model(self)
 -         #self.regime = {
 -         #    0: {'optimizer': 'SGD', 'lr': 1e-1,
 -         #        'weight_decay': 1e-4, 'momentum': 0.9},
 -         #    81: {'lr': 1e-4},
 -         #    122: {'lr': 1e-5, 'weight_decay': 0},
 -         #    164: {'lr': 1e-6}
 -         #}
 -         self.regime = {
 -             0: {'optimizer': 'Adam', 'lr': 5e-3},
 -             101: {'lr': 1e-3},
 -             142: {'lr': 5e-4},
 -             184: {'lr': 1e-4},
 -             220: {'lr': 1e-5}
 -         }
 - 
 - 
 - def resnet_binary(**kwargs):
 -     num_classes, depth, dataset = map(
 -         kwargs.get, ['num_classes', 'depth', 'dataset'])
 -     if dataset == 'imagenet':
 -         num_classes = num_classes or 1000
 -         depth = depth or 50
 -         if depth == 18:
 -             return ResNet_imagenet(num_classes=num_classes,
 -                                    block=BasicBlock, layers=[2, 2, 2, 2])
 -         if depth == 34:
 -             return ResNet_imagenet(num_classes=num_classes,
 -                                    block=BasicBlock, layers=[3, 4, 6, 3])
 -         if depth == 50:
 -             return ResNet_imagenet(num_classes=num_classes,
 -                                    block=Bottleneck, layers=[3, 4, 6, 3])
 -         if depth == 101:
 -             return ResNet_imagenet(num_classes=num_classes,
 -                                    block=Bottleneck, layers=[3, 4, 23, 3])
 -         if depth == 152:
 -             return ResNet_imagenet(num_classes=num_classes,
 -                                    block=Bottleneck, layers=[3, 8, 36, 3])
 - 
 -     elif dataset == 'cifar10':
 -         num_classes = num_classes or 10
 -         depth = depth or 18
 -         return ResNet_cifar10(num_classes=num_classes,
 -                               block=BasicBlock, depth=depth)
 
 
  |