| 
						 | 
						- import torch.nn as nn
 - import torchvision.transforms as transforms
 - 
 - 
 - class AlexNetOWT_BN(nn.Module):
 - 
 -     def __init__(self, num_classes=1000):
 -         super(AlexNetOWT_BN, self).__init__()
 -         self.features = nn.Sequential(
 -             nn.Conv2d(3, 128, kernel_size=3, stride=1, padding=1,
 -                       bias=False),
 -             nn.BatchNorm2d(128),
 -             nn.ReLU(inplace=True),
 - 
 -             nn.Conv2d(128, 128, kernel_size=3, padding=1, bias=False),
 -             nn.MaxPool2d(kernel_size=2, stride=2),
 -             nn.ReLU(inplace=True),
 -             nn.BatchNorm2d(128),
 - 
 -             nn.Conv2d(128, 256, kernel_size=3, padding=1, bias=False),
 -             nn.ReLU(inplace=True),
 -             nn.BatchNorm2d(256),
 - 
 -             nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=False),
 -             nn.MaxPool2d(kernel_size=2, stride=2),
 -             nn.ReLU(inplace=True),
 -             nn.BatchNorm2d(256),
 - 
 -             nn.Conv2d(256, 512, kernel_size=3, padding=1, bias=False),
 -             nn.ReLU(inplace=True),
 -             nn.BatchNorm2d(512),
 - 
 -             nn.Conv2d(512, 512, kernel_size=3, padding=1, bias=False),
 -             nn.MaxPool2d(kernel_size=2, stride=2),
 -             nn.ReLU(inplace=True),
 -             nn.BatchNorm2d(512),
 -         )
 -         self.classifier = nn.Sequential(
 -             nn.Linear(512 * 4 * 4, 1024, bias=False),
 -             nn.BatchNorm1d(1024),
 -             nn.ReLU(inplace=True),
 -             nn.Dropout(0.5),
 -             nn.Linear(1024, 1024, bias=False),
 -             nn.BatchNorm1d(1024),
 -             nn.ReLU(inplace=True),
 -             nn.Dropout(0.5),
 -             nn.Linear(1024, num_classes)
 -             nn.LogSoftMax()
 -         )
 - 
 -         self.regime = {
 -             0: {'optimizer': 'SGD', 'lr': 1e-2,
 -                 'weight_decay': 5e-4, 'momentum': 0.9},
 -             10: {'lr': 5e-3},
 -             15: {'lr': 1e-3, 'weight_decay': 0},
 -             20: {'lr': 5e-4},
 -             25: {'lr': 1e-4}
 -         }
 - 
 -     def forward(self, x):
 -         x = self.features(x)
 -         x = x.view(-1, 512 * 4 * 4)
 -         x = self.classifier(x)
 -         return x
 - 
 - 
 - def model(**kwargs):
 -     num_classes = kwargs.get( 'num_classes', 1000)
 -     return AlexNetOWT_BN(num_classes)
 
 
  |